|
|
@@ -1,6 +1,6 @@
|
|
|
|
|
|
<style>
|
|
|
- .customized-counter__color-box {
|
|
|
+ .customized-count__color-box {
|
|
|
--hue: 180;
|
|
|
width: 20px;
|
|
|
height: 20px;
|
|
|
@@ -8,13 +8,13 @@
|
|
|
display: inline-block;
|
|
|
}
|
|
|
|
|
|
- .customized-counter {
|
|
|
+ .customized-count {
|
|
|
border: 3px solid #333;
|
|
|
padding-left: 5px;
|
|
|
margin-bottom: 15px;
|
|
|
}
|
|
|
|
|
|
- .customized-counter > div {
|
|
|
+ .customized-count > div {
|
|
|
display: inline-block;
|
|
|
width: 50%;
|
|
|
margin-left: 0;
|
|
|
@@ -25,14 +25,14 @@
|
|
|
<div id="demo-editor-update">
|
|
|
<p>A <strong>black hole</strong> is a region of <a href="https://en.wikipedia.org/wiki/Spacetime">spacetime</a> exhibiting <a href="https://en.wikipedia.org/wiki/Gravitation">gravitational</a> acceleration so strong that nothing—no <a href="https://en.wikipedia.org/wiki/Particle">particles</a> or even <a href="https://en.wikipedia.org/wiki/Electromagnetic_radiation">electromagnetic radiation</a> such as <a href="https://en.wikipedia.org/wiki/Light">light</a>—can escape from it.<a href="https://en.wikipedia.org/wiki/Black_hole#cite_note-6">[6]</a> The theory of <a href="https://en.wikipedia.org/wiki/General_relativity">general relativity</a> predicts that a sufficiently compact <a href="https://en.wikipedia.org/wiki/Mass">mass</a> can deform <a href="https://en.wikipedia.org/wiki/Spacetime">spacetime</a> to form a black hole.</p>
|
|
|
</div>
|
|
|
-<div class="customized-counter">
|
|
|
- <div class="customized-counter__words">
|
|
|
+<div class="customized-count">
|
|
|
+ <div class="customized-count__words">
|
|
|
<label>Words:
|
|
|
<progress value="42" max="100"></progress>
|
|
|
</label>
|
|
|
</div>
|
|
|
- <div class="customized-counter__characters">
|
|
|
+ <div class="customized-count__characters">
|
|
|
Characters:
|
|
|
- <div class="customized-counter__color-box"></div>
|
|
|
+ <div class="customized-count__color-box"></div>
|
|
|
</div>
|
|
|
</div>
|